Outcome of MEPC 78

Korean Register

Convention & Legislation Service Team, June 2022

Outcome of MEPC 78

1. MARPOL Amendments (MARPOL Annex I and IBC Code)

2. Ballast Water Management

3. Air Pollution and Energy Efficiency

4. Green House Gas from international shipping

KOREAN REGISTER

1. MARPOL Amendments

1. MARPOL Annex I and IBC Code

MEPC 78 adopted Res.MEPC.343(78) and Res.MEPC.345(78) in relation to the watertight door

CHAPTER 4 – REQUIREMENTS FOR THE CARGO AREA OF OIL TANKERS

PART A - CONSTRUCTION

Regulation 28 - Subdivision and damage stability

- 1 Paragraph 3.1 is replaced by the following:
 - ".1 The final waterline, taking into account sinkage, heel and trim, shall be below the lower edge of any opening through which progressive flooding may take place. Such openings shall include air-pipes and those which are closed by means of weathertight doors or hatch covers and may exclude those openings closed by means of watertight manhole covers and flush scuttles, small watertight cargo tank hatch covers which maintain the high integrity of the deck, remotely operated sliding watertight doors, hinged watertight access doors with open/closed indication locally and at the navigation bridge, of the quick-acting or single-action type that are normally closed at sea, hinged watertight doors that are permanently closed at sea, and sidescuttles of the non-opening type."

* It has been revised to align the SOLAS and MSC.1/Circ.1572/Rev.1, given that the types of watertight doors (Remotely operated sliding door, Sliding door, Hinged door) fitted on watertight bulkhead for cargo ships depend on the frequency of use while at sea (Used, Normally closed, Permanently closed). But there is a reference to remotely operated sliding door as used while at sea in MARPOL Annex I and IBC Code

Source : www.gard.no

1. MARPOL Amendments

2. MARPOL Annex II

MEPC 78 adopted Res.MEPC.344(78) in relation to the GESAMP Hazard evaluation procedure

CESAMP			C Acute Mammalian Toxicity						
102	A section of the sect		C1 Oral Toxicity	C2 Dermal Toxicity	C3 Inhalation Toxicity				
					C	:3a	C3b		
	PROCEDURE DU CHENCALS		LD ₅₀ /ATE (mg/kg)	LD ₅₀ /ATE (mg/kg)	vapour/mist LC ₅₀ /ATE (mg/L)	mist only LC ₅₀ /ATE (mg/L)	vapour only LC ₅₀ /ATE (mg/L)		
	CARRIED BY SHIPS, 2019	0	ATE >2000	ATE >2000	ATE >20	ATE >5	ATE >20		
		1	300< ATE ≤2000	1000< ATE ≤2000	10< ATE ≤20	1< ATE ≤5	10< ATE ≤20		
	GESAMP WORKING GROUP I	2	50< ATE ≤300	200< ATE ≤1000	2< ATE ≤10	0.5< ATE ≤1	2< ATE ≤10		
	1 2 0 0 0 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	3	5< ATE ≤50	50< ATE ≤200	0.5< ATE ≤2	0.05< ATE ≤0.5	0.5< ATE ≤2		
		4	ATE ≦0	ATE SOU	ATE SU.5	ATE SUUD	ATE SU.5		
		[E Interference with other Uses of the Sea						
A		Numerical Rating	E1 Flammability Flashpoint (°C)	E2 Physical effects on wi habita	Idlife and benthic ts	E3 Interference with Coastal Amenities no interference no warning			
		0	(not flammable, does not burn)	Fp- Persistent FloaterF- FloaterS- Sinker					
		1	Fp >93	G - Gas slightly objec E - Evaporator warning, no			nable osure of amenity		
		2	60< Fp ≤93	D - Dissolver and combinations	Original combinations thereof moderately object possible closure		onable of amenity		
		3	23≤ Fp ≤60		highly objectio closure of an				
		4	Fp <23						

* It This was to reflect two changes in the GESAMP Hazard Profile, namely sub-categorization of column C3 and the reassignment of column E1, in accordance with the finalized GESAMP Reports and Studies No.102

Source : ResearchGate

Outcome of MEPC 78

1. MARPOL Amendments

2. Ballast Water Management (EBP, PCWQ, Sewage and Grey water in BWT, BWRB)

3. Air Pollution and Energy Efficiency

4. Green House Gas from international shipping

KOREAN REGISTER

1. Experience Building Phase (EBP)

MEPC 78 agreed to develop a Convention Review Plan (CRP) that could take into account the data analysis report, establish a clear scope of a feasible Convention review, focus attention on priority issues

Key elements in the analysis report of EBP:

- Data from 16,199 ships were collected by 21 flags and 13,971 ships were subject to D-2 standard (7,329 ships with BWMS, 93.6% used UV or electrolysis)
- Data from 45,710 surveys from flags with a total of 512 deficiencies, representing an estimated minimum 98.9% rate of compliance
- The most frequent deficiencies were related to the recording of **BWRB** and no valid certificate on ships
- 68% compliance with D-2 standard of the 123 detailed analysis. Failure to meet the D-2 standard were most common for the \geq 50µm organism size

* This agreement also means that the EBP for the BWM Convention was extended by autumn 2026 and the non-penalization of earlymovers was also extended to the end of EBP

Figure 1: Stages of the ballast water experience-building phase and non-penalization

2. Guidance for Ports with Challenging Water Quality (PCWQ)

MEPC 78 considered various aspects of BWE+BWT when operating ports with challenged water quality

* MEPC 78 generally agreed the BWE+BWT concept, while couldn't reach a consensus as there were divergent views with as to water quality conditions such as BWMS not able to operate due to challenge water quality, aspects of BWE+BWT such as port State determines where ballast water exchange could take place. It will be revisited at MEPC 79

3. Temporary Storage of treated sewage and grey water in ballast water tank under BWM Convention

MEPC 78 considered a proposal asking clarifications as to whether temporary storage of treated sewage and grey water in a ballast water is permitted or not

Recalling outcomes from MEPC 63 and 64

- BWM Convention has not yet entered into force
- Grey water is not regulated by MARPOL Annex IV
- There is a need to address the difficulties (not allowed to discharge sewage in port? Have to use additional tanks for temporary storage of sewage?)
- Untreated sewage should be prohibited to be transferred to ballast water tanks as operational problem will be expected

* MEPC 78 agreed that ballast water discharges from ballast water tanks used also for other purposes should be compliant with the BWM Convention, while other issues should be addressed in the context of MARPOL Annex IV. But, the Committee couldn't confirm that whether the temporary storage of treated sewage and grey water in the ballast water tanks can be allowed or not

Source : Shipfever

4. Unified Interpretation of Appendix I to BWM Convention (Form of IBWM Certificate)

MEPC 78 approved BWM.2/Circ.66/Rev.3 providing a UI specifying how to complete IBWM Certificate

	Interpretation
Annou div Lof the DWM Convention mode on follows:	1 For a ship which is occasionally engaged in an international voyage and is not intending to discharge ballast water back to the original location, having been granted an exemption by its Administration taking into account BWM.2/Circ.52/Rev.1, on the condition that the ship implements the D-1 standard in lieu of the D-2 standard, the principal ballast water management method(s) employed is:
"Method of ballast water management used	"⊠ other approach in accordance with regulation <u>D-1 taking into account</u> BWM.2/Circ.52/Rev.1."
Date installed (if applicable) (dd/mm/yyyy) Name of manufacturer (if applicable)	2 For a ship granted an exemption in accordance with regulation A-4 of the BWM Convention, the principal ballast water management method employed on the ship is:
The principal ballast water management method(s) employed on this ship is/are:	"⊠ other approach in accordance with regulation <u>A-4</u> ."
□ in accordance with regulation D-2 (describe) □ the ship is subject to regulation D-4 □ other approach in accordance with regulation"	3 For a ship which is fitted with a BWMS on board and is certified in accordance with the D-2 standard, even if the ship will also use other ballast water management methods as contingency measures, as reflected in its Ballast Water Management Plan, the principal ballast water management method employed on this ship is:
	"⊠ in accordance with regulation D-2 (describe)"
	4 For a ship which has employed an "other approach" in accordance with regulation B-3.6 or B-3.7 of the BWM Convention, the Ballast Water Management Plan should describe

* It provides how to complete the Certificate for a ship which is occasionally engaged in an international voyage in accordance with BWM.2/Circ.52/Rev.1; granted an exemption in accordance with regulation A-4 of the Convention; fitted with a BWMS but using other methods as contingency measures; and has employed an "other approach" in accordance with B-3.6(reception facility) and 3.7(other methods subject to the approval by MEPC (not discharging ballast water or not carrying ballast water – not decided yet)

the other approach that has been approved for the ship.

5. Guidelines for the implementation of International Anti-Fouling Convention

MEPC 78 adopted guidelines* to support the revised IAFS Convention for regulating Cybutryne

Provide additional details for confirming compliance, such as:

- Compliance sampling of the anti-fouling system paint should not be present above <u>1,000mg</u> <u>cybutryne per kg of dry paint</u> and <u>250mg cybutryne per kg of wet</u> <u>paint</u>
- Tolerance Range the tolerance range is <u>250mg cybutryne per kg</u> <u>of dry paint (25%)</u> in addition to the threshold value

* Res.MEPC.356(78), 2022 Guidelines for brief sampling of anti-fouling systems on ships; Res.MEPC.357(78), 2022 Guidelines for inspection of anti-fouling systems on ships; and Res.MEPC.358(78), 2022 Guidelines for survey and certification of anti-fouling

Outcome of MEPC 78

1. MARPOL Amendments

2. Ballast Water Management

3. Air Pollution and Energy Efficiency (EGCS discharge, flashpoint in BDN, Bio-Fuels and IBTS)

4. Green House Gas from international shipping

KOREAN REGISTER

3. Air Pollution & Energy Efficiency

1. Unified Interpretation of regulation 18.3 of MARPOL Annex VI (Fuel Oil Quality)

MEPC 78 approved MEPC.1/Circ.795/Rev.6 providing a UI on the use of biofuels

* <u>Less than 30%</u> by volume of biofuel should be permitted to use such a fuel oil without onboard NOx verification and <u>more than 30%</u> by volume of biofuel, the onboard simplified measurement method or direct method in accordance with NOx Technical Code 2008 should be conducted. A biofuel is a fuel oil which is derived from biomass and hence includes, but not limited to, processed used cooling oils, fatty acid methyl esters (FAME) or fatty acid ethyl esters (FAEE), straight vegetable oils (SVO), hydrotreated vegetable oil (HVO), glycerol or other biomass to liquid (BTL) type products

2. Amendments to Appendix V of MARPOL Annex VI (Flashpoint in Bunker Delivery Note)

MEPC 78 approved draft amendments to MARPOL Annex VI to add the flashpoint or a statement that flashpoint has been measured at or above 70°C to be reported in BDN

Appendix V Information to be included in the bunker delivery note (Regulation 18.5)

The following new item and associated footnote are added to the list, below "Sulphur content (% m/m)":

"Flashpoint (°C) or a statement that flashpoint has been measured at or above 70°C*"

[&]quot;* ISO 2719:2016, Determination of flash point – Pensky-Martens closed cup method, Procedure A (for Distillate Fuels) or Procedure B (for Residual Fuels). "

^{*} The Committee agreed that information on the flashpoint of fuel oil should be included in the bunker delivery note under MARPOL Annex VI, recalling the decision taken from MSC 105 in relation to the approval of draft amendments to SOLAS II-2 on development of further measures to enhance the safety of ships relating to the use of fuel oil

3. Air Pollution & Energy Efficiency

3. Guidelines for Exhaust Gas Cleaning System (EGCS) in relation to the discharge water and residues

MEPC 78 approved MEPC.1/Circ.899 – 2022 Guidelines for risk and impact assessments of the discharge water from EGCS and MEPC.1/Circ.900 – 2022 Guidance regarding the delivery of EGCS residues to port reception facilities

* The former guidelines are for member States when undertaking risk assessments to ascertain whether EGCS discharge water can be discharged in their port limits with notification of local regulations on the discharges of discharge water from EGCS and latter guidance refers that ships fitted with EGCS should keep their discharge water in dedicated holding tanks for delivery to port reception facilities in the port area where the discharge of EHCS discharge water is prohibited Source : ICCT

3. Air Pollution & Energy Efficiency

4. Designation of new Emission Control Area for Sulphur Oxides (Med SOx ECA)

MEPC 78 approved draft amendments to MARPOL Annex VI designating Mediterranean Sea as an Emission Control Area for Sulphur Oxides with a view to adoption at MEPC 79

* Given that the effective date of ECA was proposed to January 2025, but the earliest possible effective date would be in the middle of 2025 in accordance with the amendments procedures in MARPOL Convention and 1-year grace period for ECA in accordance with regulation 14.7, the effective date will be revisited at MEPC 79

Outcome of MEPC 78

1. MARPOL Amendments

2. Ballast Water Management

3. Air Pollution and Energy Efficiency

4. Green House Gas from international shipping (2050 decarbonization, Mid-term measures)

KOREAN REGISTER

1. Outcomes from ISWG-GHG 11 (Life Cycle Assessment Guidelines for Marine Fuels)

* The scope of these guidelines is to address WtW and TtW GHG emissions and sustainability criteria related to all fuels used for combustion and energy conversion (fuel cell) as well as electricity, for propulsion and operation on board a ship. The GHGs included are carbon dioxide(CO₂), methane(CH₄), and nitrogen oxide(N₂O)

1. Outcomes from ISWG-GHG 11 (Life Cycle Assessment Guidelines for Marine Fuels)

 $GHG_{WtW} \left[gCO_{2eq} / MJ \right] = GHG_{WtT} + GHG_{TtW}$

Based on Global Warming Potential (GWP)₁₀₀

 $\left| \begin{array}{c} GHG_{TtW} = \left[\left(1 - C_{slip} \right) \times \left(S_F \times C_{fCO_2} + C_{fCH_4} \times GWP_{CH_4} + C_{fN_2O} \times GWP_{N_2O} \right) + \left(C_{slip} \times GWP_{CH_4} \right) - e_{occs} \right] / LCV \end{array} \right|$

GHG _{WtT} [gCO _{2eq} /M]	$= e_{ec} + e_l + e_p + e_{td} -$	$e_c - e_{sca} - e_{ccs} - e_{ccu}$
--	-----------------------------------	-------------------------------------

			12 91	263	
Term	Units	Explanation	Term	Units	Explanation
Term	Units	Explanation	LCV	MJ/a fuel	Lower Calorific Value of the fuel (MJ/g fuel)
eec	gCO _{2eq} /MJ	emissions from the extraction or from the cultivation of raw materials	S	0 or 1	Carbon source factor
e_l	gCO _{2eq} /MJ	annualized emissions from carbon stock changes caused by land-use change (over 20 years)	$\frac{S_F}{C_{slip}}$	% of fuel mass	Coefficient accounting for fuel (methane) slip (share of the total fuel in use)
e_p	gCO _{2eq} /MJ	emissions from processing, including electrity generation	CfCO2	gCO ₂ /g fuel	CO ₂ emission conversion factor (g CO ₂ /g fuel)
etd	gCO _{2ea} /MJ	emissions from transport and distribution	C _{fCH4}	gCH ₄ /g fuel	CH ₄ emission conversion factor (g CH ₄ /g fuel)
e _c	aCO _{2eq} /MI	emissions credits generated by biomass growth	C _{fN20}	gN ₂ O/g fuel	N ₂ O emission conversion factor (g N ₂ O/ g fuel)
e _{sca}	gCO _{2eq} /MJ	emission savings from soil carbon accumulation via improved	GWP _{CH4}	gCO _{2eq} /gCH ₄	Global Warming Potential of methane over 100 set at 29.8 for fossil and at 27.5 for non-fossil methane (IPPC AR 6)
2	5	agricultural management	GWPNO	gCO _{2eg} /gN ₂ O	Global Warming Potential of N ₂ O over 100 set at 273 (IPCC AR 6)
e _{ccs}	gCO _{2eq} /MJ	emission savings from CO ₂ capture and geological storage	e _{occs}	gCO _{2eq} /MJ	emission savings from on-board CO ₂ capture and geological storage
eccu	gCO _{2eq} /MJ	emission savings from CO ₂ capture and utilization	LCV	MJ/g fuel	Lower Calorific Value of the fuel (MJ/g fuel)
				A(1, (5) (5))	

* Given the technical complexity and professional expertise required for assessing the WtT and TtW default emission values for marine fuels, MEPC 78 establish a correspondence group with a view continuing the development of draft LCA Guidelines, as well as the measurement of actual methane slip emissions from LNG dual fuel diesel engines and how to calculate WtT carbon dioxide equivalent emissions from marine fuels using GWP100 and GWP20 for comparative purpose and inclusion of "Black Carbon" into GHG category

2. Outcomes from ISWG-GHG 12 (EEXI, CII and SEEMP related updates)

MEPC 78 adopted SEEMP related Guidelines* for updating how to implementing CII requirements

For the ships of 5,000 GT and above that are subject to regulation 26.3 and 28 of MARPOL Annex VI, SEEMP Part III should include:

- A description of the methodology that will be used to calculate the ship's attained CII and the processes that will be used to report this value to ship's Administration
- Required annual operational CIIs for next three years
- Implementation plan documenting how the required CIIs will be achieved during next three years
- A procedure for self-evaluation and improvement
- Part III of the SEEMP is further to include calculation methodologies and a plan of corrective actions for ships that are rated D for three consecutive years and rated as E

APPENDIX 3

STANDARDIZED DATA REPORTING FORMAT FOR THE DATA COLLECTION SYSTEM AND OPERATIONAL CARBON INTENSITY TO THE ADMINISTRATION

Name of the ship	IMO number					
Company	Year of delivery					
Flag	Ship type					
Gross tonnage	DWT					
Applicable CII	□AER ; □caDIST					
Operational carbon intensity rating	A;B;C;D;	σE				
CII for trial purpose (none, one or more on voluntary basis)	□EEPI ; □cbDIST ; □clDIST ; □EEOI					
Attained annual operational CII before any co (AER in g CO ₂ /dwt.nm or cgDIST in g CO ₂ /gt Attained annual operational CII (AER in g CO ₂ /dwt.nm or cgDIST in g CO ₂ /gt	nm)					
End date for annual CII (dd/mm/yy)* Start date for annual CII (dd/mm/yy)* Attained EEDI (if applicable)						
Attained EEXI (if applicable) EEPI (gCO ₂ /dwt.nm)						
cbDIST (gCO ₂ /berth.nm) clDIST (gCO ₂ /m.nm)						
EEOI (gCO ₂ /t.nm or others)						
IMO number						
End date for DCS (dd/mm/yy)						
Start date for DCS (dd/mm/yy)						

* Res.MEPC.346(78), 2022 Guidelines for the Development of a Ship Energy Efficiency Management Plan (SEEMP) Res.MEPC.347(78), 2022 Guidelines for the Verification and Company Audits by the Administrations for Part III of the SEEMP

2. Outcomes from ISWG-GHG 12 (EEXI, CII and SEEMP related updates)

MEPC 78 adopted SEEMP related Guidelines* for updating how to implementing CII requirements

* Initial Verification – methodology to calculate attained/required CII, and processes to report values to flags using the forms of guideline Periodical Verification – every three years, Part III should be monitored for effective implementation and updated when necessary Additional Verification – for a ship rated D for 3 years or E, Part III should be reviewed and updated by inclusion of corrective actions Company Audits – to validate that the company has implemented the procedures effectively by visiting company office. It should be carried out for the cases where CII rating is deteriorated from C to D, or ratings(Dx3 or E) required to include corrective actions

2. Outcomes from ISWG-GHG 12 (EEXI, CII and SEEMP related updates)

MEPC 78 adopted Data Collection System related Guidelines* for updating verification aspects of CII

Verification of the Attained Annual Operational CII and Determination of the CII Rating In case of multiple load lines, the highest deadweight value should be used to calculate and verify required/attained CII In case of permanent change of ship's DWT: • .1 required CII should be calculated using original DWT .2 attained CII should be calculated using new DWT .3 for the year when the conversion is made, attained CII should be calculated on average DWT weighted Change of flag/company, the data before transfer should be verified by losing flag, and attained CII should be verified by receiving flag using the data over an entire calendar year, without verification for data before transfer

* Res.MEPC.348(78), 2022 Guidelines for Administration Verification of Ship Fuel Oil Consumption Data and Carbon Intensity Indicator Res.MEPC.349(78), 2022 Guidelines for the Development and Management of the IMO Ship Fuel Oil Consumption Database MEPC.1/Circ.901, Guidance for submission of data to the IMO DCS of FOC of ships from a State not Party to MARPOL Annex VI

2. Outcomes from ISWG-GHG 12 (EEXI, CII and SEEMP related updates)

MEPC 78 adopted CII related Guidelines(G1, G2 and G4)* for updating CII requirements

Refrigerated cargo carri			cargo carrier			DWT	4600	0.557		Revised Rating boundaries					
GT	instead of DWT	Combination carrier			DWT	<u>5119</u>	0.622	for Ro-Ro Cargo and							
for l	Ro-Ro Cargo ship	LNG carrier	100,000 DWT and abo	ve		DWT 9.827		0.000	Passenger shin						
			65,000 DWT and abov	e, but less than 10	00,000 DWT	DWT	14479E10	2.673							
4.2 Transpo	ort work (W)		less than 65,000 DWT		65,000 14			2.673	Table 1 <i>dd</i> vectors for determining the rating boundaries of ship types						
In the absence of	of the data on actual transport work, the sur	Ro-ro cargo ship (vehicle carrier)		and above		57,700		0.590	Ship type		Capacity	dd vectors (after exponential transformation)			
be taken as a pr	proxy, which is defined as the product of a			and above, but I	above, but less than		3627	0.590			in CII calculation	exp(d1)	exp(d2)	exp(d3)	exp(d4)
travelled in a give	en calendar year, as follows:			0.000 GT		GT	330 0.329		Bulk carrier		DWT	0.86	0.94	1.06	1.18
	$W_{S} = C \times D_{t}$					OT	4007	0.405	Gas carrier	65,000 DWT and above	DWT	0.81	0.91	1.12	1.44
where: • C represents the ship's capacity:		Ro-ro cargo snip			<u>G</u>	1967	<u>0.485</u> Gas carrier		less than 65,000 DWT	DWT	0.85	0.95	1.06	1.25	
		Ro-ro passenger ship High Speed Cra Chapter X		enger ship		GT	2023	0.460	Tanker		DWT	0.82	0.93	1.08	1.28
				Craft designed	raft designed to SOLAS		0407	0.400	Container ship		DWT	0.83	0.94	1.07	1.19
				•			6167	0.460	General cargo ship		DWT	0.83	0.94	1.06	1.19
	- For bulk carriers, tankers, container	Cruise passe	nger ship			GT	930	0.383	Refrigerated cargo of	DWT	0.78	0.91	1.07	1.20	
	ro-ro cargo ships general cargo sh					20030.05			Combination carrier		DWT	0.87	0.96	1.06	1.14
	combination carriers deadweight ton	nage (DWT)1 should be used as		as	Revised				LNG carrier	100,000 DWT and above	DWT	0.89	0.98	1.06	1.13
	Capacity:			40			erence I	ine		less than 100,000 DWT	2	0.78	0.92	1.10	1.37
	eupuony,				values for Combination		Values for Combination		Ro-ro cargo ship (ve	ehicle carrier)	GT	0.86	0.94	1.06	1.16
	- For cruise passenger ships, ro-ro ca	argo shins (vehicle carriers) ro ro		ro			values ioi		Ro-ro cargo ship		GT	0.76	0.89	<u>1.08</u>	1.27
cargo ships and ro-ro passenger ships, gross tonnage (rgo ships (venicle carners), <u>10-10</u>			🛛 🝆 Carrier. Ro			Ro-Ro Vehicle		ip	GT	0.76	0.92	1.14	1.30
		lage (GT)2 should	be					Cruise passenger sl	nip	GT	0.87	0.95	1.06	1.16	
 Dtrepresents the total distance travelled (in nautical miles), as reported under 				line for	new HSC	reierei	ice	Above values ha data. Note that t non-anonymized	ave been derived by the co the <i>dd</i> vectors are to be fu and non-rounded DCS data	ordinators u rther adjuste a.	sing anor ed by the	nymized a IMO Sec	nd rounde retariat us	ed DCS sing the	
 For cruise passenger ships, ro-ro cargo ships (vehicle carriers), ro-ro cargo ships and ro-ro passenger ships, gross tonnage (GT)₂ should be used as Capacity; and <i>D</i>_l represents the total distance travelled (in nautical miles), as reported under IMO DCS. 			ro be	values Carrier, carrier, line for	for Co Ro-R new HSC	ombinat Ro Vehi referer	ion icle nce	Ro-ro cargo ship (ve Ro-ro cargo ship Ro-ro passenger sh Cruise passenger sh Above values ha data. Note that t non-anonymized	ip ip nip ave been derived by the co the <i>dd</i> vectors are to be fu and non-rounded DCS data	GI GT GT ordinators u rther adjuste	0.86 0.76 0.76 0.87 sing anor	0.94 0.89 0.92 0.95 nymized a IMO Sec	1 1 1 1 nd r reta	.06 .08 .14 .06 rounde	

* Res.MEPC.352(78), 2022 Guidelines on Operational CIIs and the Calculation Methods (CII Guidelines, G1) Res.MEPC.353(78), 2022 Guidelines on the Reference Line for use with Operational CIIs (CII Reference Line, G2) Res.MEPC.354(78), 2022 Guidelines on the Operational Carbon Intensity Rating of Ships (CII Rating, G4)

2. Outcomes from ISWG-GHG 12 (EEXI, CII and SEEMP related updates)

MEPC 78 adopted new CII related Guidelines(G5)* for Voyage Adjustment and Correction Factors

Voyage Adjustment and Correction Factors

- Scenarios specified in regulation 3.1 of MARPOL Annex VI, which may endanger safe navigation of a ship;
- Sailing in ice conditions, which means sailing of an ice-classed ship in a sea area within the ice edge
- Tanker engaged in STS voyages and Shuttle Tankers equipped with Dynamic Positioning
- FC_{electric} for power (refrigerated containers, cargo cooling/reliquefaction, discharge pump on tankers)
- FC_{Boiler} for boiler fuel consumption for discharge operation (cargo heating, steam driven cargo pump)
- FC_{others} for discharge pump on tankers (discharge pump powered by their own generator)

* Res.MEPC.355(78), 2022 Guidelines on Correction Factors and Voyage Adjustments for CII Calculation (CII Guidelines, G5)

* f_i (capacity correction factor for ice-classed ships), f_m (factor for ice-classed having IA Super and IA), f_c (cubic capacity correction factor for chemical tanker), $f_{i,vse}$ (factor for voluntary structural enhancement) – from EEDI framework

2. Outcomes from ISWG-GHG 12 (EEXI, CII and SEEMP related updates)

MEPC 78 noted the discussion at ISWG-GHG 12 regarding proposed amendments to the PSC Procedures as to whether not implementing corrective actions should be regarded as a detainable deficiency

* MEPC 78 noted divergent views as to whether it should be regarded as a detainable deficiency if the CII implementation plan and/or the plan of corrective actions for the ships rated as D for 3 consecutive years and rated as E are not implemented at the time of the inspection. The Committee decided to refer this matter to III Sub-Committee for further consideration, noting it may difficult for PSCOs to assess, in the absence of unambiguous evaluation criteria, whether the the plans have been duly implemented

2. Outcomes from ISWG-GHG 12 (Mid-Term Measures for further reduction of GHG from ships)

MEPC 78 agreed that all proposals contain valuable elements to be further considered under Phase II

# 02	Proposal	Concept	Pros	Cons	
CAP Leftover allowance be reals	GFS (GHG Fuel Standard)	Limitation of WtW GHG emission intensity	Confirm target of reduction, project zero carbon fuel	No fund based measures and incentive	
Climate Change adaptation / RDR mitigation = at least 51% PEDIENNA HERSENVE NOTE KB 46279860 I B2 MONEY	ETS (Emission Trading Scheme)	Emission allowance by IMO, buy if excess of the allocation	Regulating all GHG by ships, incentives for first mover, funds auction	Difficult to predict carbon market price, uncertainty in investment	
Image: Second State Image: Second State Image: Second State Image: Second State <th>GHG Levy</th> <th>Levy per GHG emission is imposed by managing funds</th> <th>Easier to implement, generate substantial funds</th> <th>Difficult to confirm whether reduction is achieve</th>	GHG Levy	Levy per GHG emission is imposed by managing funds	Easier to implement, generate substantial funds	Difficult to confirm whether reduction is achieve	

* MEPC 78 agreed, in general, the development of a "basket of candidate mid-term measures" integrating both various technical and carbon pricing elements while recognizing the necessary flexibility mechanisms will be further discussed at ISWG-GHG 13 with a view to exploring how different of these proposals could be combined in the context of a basket of mid-term measure

3. Onboard CO₂ Capture (CO₂ removal)

MEPC 78 considered a proposal suggesting options to reflect CO₂ emission reduction by onboard CO₂ capture system by amending the current EEDI and EEXI calculation formulas

* MEPC 78 noted the views that, in particular, further work and more data from existing onboard CO2 capture technologies are needed with a view to incorporating the effect of this technology into the framework of EEDI, EEXI and CII, while the technology should be addressed by operational measures such as IMO DCS and LCA Guidelines rather than EEDI/EEXI that are design related

Source : Riviera

4. Revision of Initial IMO GHG Strategy (2050 decarbonization, net-zero GHG emission)

* Following the Rio Earth Summit of 1992, nations from around the world agreed to the principles and mechanisms for action set out in the United Nations Framework Convention on Climate Change (UNFCCC). Under the UNFCCC, the 1997 Kyoto Protocol committed developed nations to specific targets to reduce carbon emissions

Source : IMO and United Nations

4. Revision of Initial IMO GHG Strategy (2050 decarbonization, net-zero GHG emission)

* Prior to the signing in Dec' 1997 of the Kyoto Protocol to UNFCCC, the IMO International Air Pollution Conference in Sep' 1997 adopted conference resolution 8 which recognized that CO₂ emissions have an adverse impact on the environment, and noted that UNFCCC had recognized that GHG also originate from international shipping and contribute to the global inventory of emissions. The resolution invited MEPC to consider what CO₂ reduction strategies may be feasible in light of the relationship between CO₂ and atmospheric pollutants, especially NOx, since NOx emissions may exhibit an inverse relationship to CO₂ reduction

4. Revision of Initial IMO GHG Strategy (2050 decarbonization, net-zero GHG emission)

* The Glasgow Climate Pact which is an agreement reached at the 2021 United Nations Climate Change Conference (COP 26) is the first climate agreement explicitly planning to reduce unabated coal usage as well as a commitment to climate finance for developing countries. During COP 26, some declarations and pledges that would lead the shipping industry towards net-zero emissions in 2050 such as Clidebank declaration, Declaration on zero-emission shipping by 2050, CVF(Climate Vulnerable Forum) Dhaka-Glasgow declaration, etc. were presented

4. Revision of Initial IMO GHG Strategy (2050 decarbonization, net-zero GHG emission)

MEPC 80 will adopt revised IMO GHG Strategy calling for full decarbonization by 2050

Proposals and information to revise the Initial IMO GHG Strategy and 2050 level of ambition:

- Amending the Strategy to reflect a higher ambition of netzero for promoting zero carbon fuels to achieve 1.5°C goal aligned to Paris Agreement and Glasgow Climate Pact
- Thorough impact assessment on developing countries, LDC and SIDC, and mitigation of negative impacts on shipping
- Revision to 2030 and additional 2040 target to steer the shipping sector on 1.5°C aligned pathway to zero-emission
- AR6 report by IPCC refers that a higher ambition in order to not exceed 1.5°C above pre-industrial level
- The ship type-wise approach according to the "polluter pays" principle to ensure that some ship types which emit more GHGs than others reach to net-zero first

* MEPC 78 couldn't reach a consensus on the proposals, while noted views between those calling for full decarbonization by 2050 and those calling for further assessments on feasibility and impacts on States prior to decisions on the revision of IMO Strategy. Further agreed to discuss at ISWG-GHG 13 on how to phase out GHG emissions with concrete proposals on revision of IMO Initial Strategy

Any Questions ?

Outcome of MEPC 78

Thank you for your attention!

Lee Tae-Hoon(leeth@krs.co.kr) Convention and Legislation Service Team Korean Register Tel: +82-70-8799-8324 E-mail: convention@krs.co.kr

Kim Hoi-jun (kimhj@krs.co.kr) Convention and Legislation Service Team Korean Register Tel: +82-70-8799-8330 E-mail: convention@krs.co.kr